
DBMS & SQL NOTES

Database: A database is a collec�on of related data which represents some aspect of the real
world. A database system is designed to be built and populated with data for a certain task.

Database Management System (DBMS) is a so�ware for storing and retrieving users' data while
considering appropriate security measures. It consists of a group of programs which manipulate
the database. The DBMS accepts the request for data from an applica�on and instructs the
opera�ng system to provide the specific data. In large systems, a DBMS helps users and other
third-party so�ware to store and retrieve data.

Database management systems were developed to handle the following difficul�es of typical
File-processing systems supported by conven�onal opera�ng systems.
1. Data redundancy and inconsistency
2. Difficulty in accessing data
3. Data isola�on – mul�ple files and formats
4. Integrity problems
5. Atomicity of updates
6. Concurrent access by mul�ple users
7. Security problems

ER diagram:

● ER diagram or En�ty Rela�onship diagram is a conceptual model that gives the
graphical representa�on of the logical structure of the database.

● It shows all the constraints and rela�onships that exist among the different components.

● An ER diagram is mainly composed of following three components- En�ty Sets,
A�ributes and Rela�onship Set.

● Roll_no is a primary key that can iden�fy each en�ty uniquely.

● Thus, by using a student's roll number, a student can be iden�fied uniquely.

En�ty Set:

An en�ty set is a set of the same type of en��es.

● Strong En�ty Set:
o A strong en�ty set is an en�ty set that contains sufficient a�ributes to uniquely

iden�fy all its en��es.
o In other words, a primary key exists for a strong en�ty set.
o Primary key of a strong en�ty set is represented by underlining it.

● Weak En�ty Set:
o A weak en�ty set is an en�ty set that does not contain sufficient a�ributes to

uniquely iden�fy its en��es.
o In other words, a primary key does not exist for a weak en�ty set.
o However, it contains a par�al key called a discriminator.
o Discriminator can iden�fy a group of en��es from the en�ty set.
o Discriminator is represented by underlining with a dashed line.

Rela�onship:

A rela�onship is defined as an associa�on among several en��es.

● Unary Rela�onship Set - Unary rela�onship set is a rela�onship set where only one
en�ty set par�cipates in a rela�onship set.

● Binary Rela�onship Set - Binary rela�onship set is a rela�onship set where two en�ty
sets par�cipate in a rela�onship set.

● Ternary Rela�onship Set - Ternary rela�onship set is a rela�onship set where three
en�ty sets par�cipate in a rela�onship set.

● N-ary Rela�onship Set - N-ary rela�onship set is a rela�onship set where ‘n’ en�ty sets
par�cipate in a rela�onship set.

Cardinality Constraint:

Cardinality constraint defines the maximum number of rela�onship instances in which an en�ty
can par�cipate.

● One-to-One Cardinality - An en�ty in set A can be associated with at most one en�ty in
set B. An en�ty in set B can be associated with at most one en�ty in set A.

● One-to-Many Cardinality - An en�ty in set A can be associated with any number (zero or

more) of en��es in set B. An en�ty in set B can be associated with at most one en�ty in
set A.

● Many-to-One Cardinality - An en�ty in set A can be associated with at most one en�ty in
set B. An en�ty in set B can be associated with any number of en��es in set A. ●
Many-to-Many Cardinality - An en�ty in set A can be associated with any number (zero or
more) of en��es in set B. An en�ty in set B can be associated with any number (zero or
more) of en��es in set A.

A�ributes:

A�ributes are the descrip�ve proper�es which are owned by each en�ty of an En�ty Set.

Types of A�ributes:

● Simple A�ributes - Simple a�ributes are those a�ributes which cannot be divided
further. Ex. Age

● Composite A�ributes - Composite a�ributes are those a�ributes which are composed
of many other simple a�ributes. Ex. Name, Address

● Mul� Valued A�ributes - Mul� valued a�ributes are those a�ributes which can take
more than one value for a given en�ty from an en�ty set. Ex. Mobile No, Email ID ●
Derived A�ributes - Derived a�ributes are those a�ributes which can be derived from
other a�ribute(s). Ex. Age can be derived from DOB.
● Key A�ributes - Key a�ributes are those a�ributes which can iden�fy an en�ty uniquely

in an en�ty set. Ex. Roll No.

Constraints:

Rela�onal constraints are the restric�ons imposed on the database contents and
opera�ons. They ensure the correctness of data in the database.

● Domain Constraint - Domain constraint defines the domain or set of values for an
a�ribute. It specifies that the value taken by the a�ribute must be the atomic value from
its domain.

● Tuple Uniqueness Constraint - Tuple Uniqueness constraint specifies that all the tuples
must be necessarily unique in any rela�on.

● Key Constraint - All the values of the primary key must be unique. The value of the
primary key must not be null.

● En�ty Integrity Constraint - En�ty integrity constraint specifies that no a�ribute of
primary key must contain a null value in any rela�on.

● Referen�al Integrity Constraint - It specifies that all the values taken by the foreign key

must either be available in the rela�on of the primary key or be null.

Closure of an A�ribute Set:

The set of all those a�ributes which can be func�onally determined from an a�ribute set is
called a closure of that a�ribute set.

Keys:

A key is a set of a�ributes that can iden�fy each tuple uniquely in the given rela�on .

Types of Keys:

● Super Key - A superkey is a set of a�ributes that can iden�fy each tuple uniquely in the
given rela�on. A super key may consist of any number of a�ributes.

● Candidate Key - A set of minimal a�ribute(s) that can iden�fy each tuple uniquely in the
given rela�on is called a candidate key.

● Primary Key - A primary key is a candidate key that the database designer selects while
designing the database. Primary Keys are unique and NOT NULL.

● Alternate Key - Candidate keys that are le� unimplemented or unused a�er

implemen�ng the primary key are called as alternate keys.
● Foreign Key - An a�ribute ‘X’ is called as a foreign key to some other a�ribute ‘Y’ when its

values are dependent on the values of a�ribute ‘Y’. The rela�on in which a�ribute ‘Y’ is
present is called as the referenced rela�on. The rela�on in which a�ribute ‘X’ is present
is called as the referencing rela�on.

● Composite Key - A primary key composed of mul�ple a�ributes and not just a single
a�ribute is called a composite key.

● Unique Key - It is unique for all the records of the table. Once assigned, its value cannot
be changed i.e. it is non-updatable. It may have a NULL value.

Func�onal Dependency:

In any rela�on, a func�onal dependency α → β holds if- Two tuples having same value

of a�ribute α also have same value for a�ribute β .

Types of Func�onal Dependency:

● Trivial Func�onal Dependencies –
o A func�onal dependency X → Y is said to be trivial if and only if Y ⊆ X. o
Thus, if RHS of a func�onal dependency is a subset of LHS, then it is called a
trivial func�onal dependency.

● Non-Trivial Func�onal Dependencies –
o A func�onal dependency X → Y is said to be non-trivial if and only if Y ⊄ X. o
Thus, if there exists at least one a�ribute in the RHS of a func�onal dependency

that is not a part of LHS, then it is called a non-trivial func�onal dependency.

Decomposi�on of a Rela�on:

The process of breaking up or dividing a single rela�on into two or more sub rela�ons is called
the decomposi�on of a rela�on.

Proper�es of Decomposi�on:

● Lossless Decomposi�on - Lossless decomposi�on ensures
o No informa�on is lost from the original rela�on during decomposi�on. o When
the sub rela�ons are joined back, the same rela�on is obtained that was
decomposed.

● Dependency Preserva�on - Dependency preserva�on ensures
o None of the func�onal dependencies that hold on the original rela�on are lost. o
The sub rela�ons s�ll hold or sa�sfy the func�onal dependencies of the original
rela�on.

Types of Decomposi�on:

● Lossless Join Decomposi�on:
o Consider there is a rela�on R which is decomposed into sub rela�ons R1, R2, … .,

Rn.
o This decomposi�on is called lossless join decomposi�on when the join of the sub

rela�ons results in the same rela�on R that was decomposed.
o For lossless join decomposi�on, we always have- R1 ⋈ R2 ⋈ R3 …… . ⋈ Rn = R

where ⋈ is a natural join operator
● Lossy Join Decomposi�on:

o Consider there is a rela�on R which is decomposed into sub rela�ons R1, R2, … .,
Rn.

o This decomposi�on is called lossy join decomposi�on when the join of the sub

rela�ons does not result in the same rela�on R that was decomposed.
o For lossy join decomposi�on, we always have- R1 ⋈ R2 ⋈ R3 …… . ⋈ Rn ⊃ R

where ⋈ is a natural join operator

Normaliza�on:

In DBMS, database normaliza�on is a process of making the database consistent by-

● Reducing the redundancies
● Ensuring the integrity of data through lossless decomposi�on

Normal Forms:

● First Normal Form (1NF) - A given rela�on is called in First Normal Form (1NF) if each cell
of the table contains only an atomic value i.e. if the a�ribute of every tuple is either
single valued or a null value.

● Second Normal Form (2NF) - A given rela�on is called in Second Normal Form (2NF) if
and only if

o Rela�on already exists in 1NF.
o No par�al dependency exists in the rela�on.

A → B is called a par�al dependency if and only if- A is a subset of some
candidate key and B is a non-prime a�ribute.

● Third Normal Form (3NF) - A given rela�on is called in Third Normal Form (3NF) if and
only if

o Rela�on already exists in 2NF.
o No transi�ve dependency exists for non-prime a�ributes.

A → B is called a transi�ve dependency if and only if- A is not a super key and B
is a non-prime a�ribute.

● Boyce-Codd Normal Form - A given rela�on is called in BCNF if and only if
o Rela�on already exists in 3NF.
o For each non-trivial func�onal dependency ‘A → B’, A is a super key of the

rela�on.

Transac�on:
Transac�on is a single logical unit of work formed by a set of opera�ons.

Opera�ons in Transac�on:

● Read Opera�on - Read(A) instruc�on will read the value of ‘A’ from the database and
will store it in the buffer in main memory.

● Write Opera�on – Write(A) will write the updated value of ‘A’ from the buffer to the
database.

Transac�on States:

● Ac�ve State –

o This is the first state in the life cycle of a transac�on.
o A transac�on is called in an ac�ve state as long as its instruc�ons are ge�ng

executed.
o All the changes made by the transac�on now are stored in the buffer in main

memory.
● Par�ally Commi�ed State –

o A�er the last instruc�on of the transac�on has been executed, it enters into a
par�ally commi�ed state.

o A�er entering this state, the transac�on is considered to be par�ally commi�ed.
o It is not considered fully commi�ed because all the changes made by the

transac�on are s�ll stored in the buffer in main memory.
● Commi�ed State –

o A�er all the changes made by the transac�on have been successfully stored into
the database, it enters into a commi�ed state.

o Now, the transac�on is considered to be fully commi�ed.
● Failed State –

o When a transac�on is ge�ng executed in the ac�ve state or par�ally commi�ed
state and some failure occurs due to which it becomes impossible to con�nue
the execu�on, it enters into a failed state.

● Aborted State –
o A�er the transac�on has failed and entered into a failed state, all the changes

made by it have to be undone.
o To undo the changes made by the transac�on, it becomes necessary to roll back

the transac�on.
o A�er the transac�on has rolled back completely, it enters into an aborted state.

● Terminated State –
o This is the last state in the life cycle of a transac�on.
o A�er entering the commi�ed state or aborted state, the transac�on finally

enters into a terminated state where its life cycle finally comes to an end.

ACID Proper�es:

To ensure the consistency of the database, certain proper�es are followed by all the
transac�ons occurring in the system. These proper�es are called as ACID Proper�es of a
transac�on.

● Atomicity –
o This property ensures that either the transac�on occurs completely or it does not

occur at all.
o In other words, it ensures that no transac�on occurs par�ally.

● Consistency –
o This property ensures that integrity constraints are maintained.
o In other words, it ensures that the database remains consistent before and a�er

the transac�on.
● Isola�on –

o This property ensures that mul�ple transac�ons can occur simultaneously
without causing any inconsistency.

o The resultant state of the system a�er execu�ng all the transac�ons is the same
as the state that would be achieved if the transac�ons were executed serially one
a�er the other.

● Durability –
o This property ensures that all the changes made by a transac�on a�er its

successful execu�on are wri�en successfully to the disk.
o It also ensures that these changes exist permanently and are never lost even if

there occurs a failure of any kind.

Schedules:

The order in which the opera�ons of mul�ple transac�ons appear for execu�on is called as a
schedule.

● Serial Schedules –

o All the transac�ons execute serially one a�er the other.
o When one transac�on executes, no other transac�on is allowed to execute.

o Serial schedules are always- Consistent, Recoverable, Cascadeless and Strict. ●
Non-Serial Schedules –

o Mul�ple transac�ons execute concurrently.
o Opera�ons of all the transac�ons are inter leaved or mixed with each other.
o Non-serial schedules are not always- Consistent, Recoverable, Cascadeless and

Strict.

Serializability –

● Some non-serial schedules may lead to inconsistency of the database. ● Serializability
is a concept that helps to iden�fy which non-serial schedules are correct and will
maintain the consistency of the database.
● Serializable Schedules –

o If a given non-serial schedule of ‘n’ transac�ons is equivalent to some serial
schedule of ‘n’ transac�ons, then it is called as a serializable schedule.

o Serializable schedules are always- Consistent, Recoverable, Cascadeless and
Strict.

Types of Serializability –

● Conflict Serializability - If a given non-serial schedule can be converted into a serial
schedule by swapping its non-conflic�ng opera�ons, then it is called a conflict
serializable schedule.

● View Serializability - If a given schedule is found to be viewed as equivalent to some
serial schedule, then it is called a view serializable schedule.

Non-Serializable Schedules –

● A non-serial schedule which is not serializable is called a non-serializable schedule. ● A
non-serializable schedule is not guaranteed to produce the same effect as produced by
some serial schedule on any consistent database.
● Non-serializable schedules- may or may not be consistent, may or may not be

recoverable.
● Irrecoverable Schedules –

If in a schedule,
o A transac�on performs a dirty read opera�on from an uncommi�ed transac�on

o And commits before the transac�on from which it has read the value then such a
schedule is known as an Irrecoverable Schedule.

● Recoverable Schedules –
If in a schedule,

o A transac�on performs a dirty read opera�on from an uncommi�ed transac�on
o And its commit opera�on is delayed �ll the uncommi�ed transac�on either
commits or roll backs

then such a schedule is known as a Recoverable Schedule.
Types of Recoverable Schedules –

● Cascading Schedule - If in a schedule, failure of one transac�on causes several other
dependent transac�ons to rollback or abort, then such a schedule is called as a
Cascading Schedule or Cascading Rollback or Cascading Abort.

● Cascadeless Schedule - If in a schedule, a transac�on is not allowed to read a data item
un�l the last transac�on that has wri�en it is commi�ed or aborted, then such a
schedule is called as a Cascadeless Schedule.

● Strict Schedule - If in a schedule, a transac�on is neither allowed to read nor write a data
item un�l the last transac�on that has wri�en it is commi�ed or aborted, then such a
schedule is called as a Strict Schedule.

Rela�onal Algebra:

Rela�onal Algebra is a procedural query language which takes a rela�on as an input and
generates a rela�on as an output.

Basic Operator Seman�c

σ (Selec�on) Select rows based on given condi�on

∏ (Projec�on) Project some columns

X (Cross Product) Cross product of rela�ons, returns m*n rows where m and n
are number of rows in R1 and R2 respec�vely.

U (Union) Return those tuples which are either in R1 or in R2. Max no.
of rows returned = m+n and Min no. of rows returned =
max(m,n)

− (Minus) R1-R2 returns those tuples which are in R1 but not in R2.
Max no. of rows returned = m and Min no. of rows
returned = m-n

ρ (Rename) Renaming a rela�on to another rela�on.

Extended Operator Seman�c

∩ (Intersec�on) Returns those tuples which are in both R1 and R2. Max no.
of rows returned = min(m,n) and Min no. of rows returned
= 0

⋈ c (Condi�onal Join) Selec�on from two or more tables based on some
condi�on (Cross product followed by selec�on)

⋈ (Equi Join) It is a special case of condi�onal join when only
equality condi�ons are applied between a�ributes.

⋈ (Natural Join) In natural join, equality condi�ons on common a�ributes
hold and duplicate a�ributes are removed by default.
Note: Natural Join is equivalent to cross product if two
rela�ons have no a�ribute in common and natural join of a
rela�on R with itself will return R only.

File Structures:

● Primary Index: A primary index is an ordered file, records of fixed length with two fields.
First field is the same as the primary key as a data file and the second field is a pointer to
the data block, where the key is available. The average number of block accesses using
index = log 2 Bi + 1 , where Bi = number of index blocks.

● Clustering Index: Clustering index is created on data file whose records are physically
ordered on a non-key field (called Clustering field).

● Secondary Index: Secondary index provides secondary means of accessing a file for
which primary access already exists.

B Trees
At every level , we have Key and Data Pointer and data pointer points to either block or record.

Proper�es of B-Trees:
Root of B-tree can have children between 2 and P , where P is Order of

⟕ (Le� Outer Join) When applying join on two rela�ons R and S, some tuples of R
or S do not appear in the result set which does not sa�sfy the
join condi�ons. But Le� Outer Joins gives all tuples of R in the
result set. The tuples of R which do not sa�sfy the join
condi�on will have values as NULL for a�ributes of S.

⟖ (Right Outer Join) When applying join on two rela�ons R and S, some tuples of R
or S do not appear in the result set which does not sa�sfy the
join condi�ons. But Right Outer Joins gives all tuples of S in
the result set. The tuples of S which do not sa�sfy the join
condi�on will have values as NULL for a�ributes of R.

⟗(Full Outer Join)

/(Division Operator)

When applying join on two rela�ons R and S, some tuples of R
or S do not appear in the result set which does not sa�sfy the
join condi�ons. But Full Outer Joins gives all tuples of S and all
tuples of R in the result set. The tuples of S which do not
sa�sfy the join condi�on will have values as NULL for a�ributes
of R and vice versa.
Division operator A/B will return those tuples in A which are
associated with every tuple of B. Note: A�ributes of B should
be a proper subset of a�ributes of A. The a�ributes in A/B will
be A�ributes of A- A�ribute of B.

tree. Order of tree – Maximum number of children a node can have.

Internal node can have children between ⌈ P/2 ⌉ and P
Internal node can have keys between ⌈ P/2 ⌉ – 1 and P-1
B+ Trees
In B+ trees, the structure of leaf and non-leaf are different, so their order is. Order of non-leaf
will be higher as compared to leaf nodes.

Searching �me will be less in B+ trees, since it doesn’t have record pointers in non-leaf because
of which depth will decrease.

SQL

DDL:

DDL is short name of Data Defini�on Language, which deals with database schemas and
descrip�ons, of how the data should reside in the database.

● CREATE - to create a database and its objects like (table, index, views, store procedure,
func�on, and triggers)

● ALTER - alters the structure of the exis�ng database
● DROP - delete objects from the database
● TRUNCATE - remove all records from a table, including all spaces allocated for the

records are removed
● RENAME - rename an object

DML:

DML is short name of Data Manipula�on Language which deals with data manipula�on and
includes most common SQL statements such SELECT, INSERT, UPDATE, DELETE, etc., and it is
used to store, modify, retrieve, delete and update data in a database.

● SELECT - retrieve data from a database
● INSERT - insert data into a table
● UPDATE - updates exis�ng data within a table
● DELETE - Delete all records from a database table
● MERGE - UPSERT opera�on (insert or update)

DCL:
DCL is short name of Data Control Language which includes commands such as GRANT and
mostly concerned with rights, permissions and other controls of the database system.

● GRANT - allow users access privileges to the database
● REVOKE - withdraw users access privileges given by using the GRANT command

TCL:

TCL is short name of Transac�on Control Language which deals with a transac�on within a
database.

● COMMIT - commits a Transac�on
● ROLLBACK - rollback a transac�on in case of any error occurs
● SAVEPOINT - to roll back the transac�on making points within groups

SQL:

SQL is a standard language for storing, manipula�ng and retrieving data in databases.

SELECT:

The SELECT statement is used to select data from a database.

Syntax -

● SELECT column1 , column2, ...
FROM table_name ;

● Here, column1, column2, ... are the field names of the table you want to select data
from. If you want to select all the fields available in the table, use the following syntax: ●
SELECT * FROM table_name ;

Ex –

● SELECT CustomerName, City FROM Customers;

SELECT DISTINCT:

The SELECT DISTINCT statement is used to return only dis�nct (different) values.

Syntax –

● SELECT DISTINCT column1 , column2, ...
FROM table_name ;

Ex –
● SELECT DISTINCT Country FROM Customers;

WHERE:

The WHERE clause is used to filter records.

Syntax –

● SELECT column1 , column2, ...
FROM table_name
WHERE condi�on ;

Ex –

● SELECT * FROM Customers
WHERE Country='Mexico';

AND, OR and NOT:

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one condi�on:

● The AND operator displays a record if all the condi�ons separated by AND are TRUE.
● The OR operator displays a record if any of the condi�ons separated by OR is TRUE.

The NOT operator displays a record if the condi�on(s) is NOT TRUE.

Operator Descrip�on

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal. Note: In some versions of SQL this operator may be wri�en as !=

Syntax –

● SELECT column1 , column2, ...
FROM table_name
WHERE condi�on1 AND condi�on2 AND condi�on3 ... ;

● SELECT column1 , column2, ...
FROM table_name
WHERE condi�on1 OR condi�on2 OR condi�on3 ... ;

● SELECT column1 , column2, ...
FROM table_name
WHERE NOT condi�on ;

Ex –

● SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

● SELECT * FROM Customers
WHERE Country='Germany' AND (City='Berlin' OR City='München');

ORDER BY:

The ORDER BY keyword is used to sort the result-set in ascending or descending order.

The ORDER BY keyword sorts the records in ascending order by default. To sort the records in
descending order, use the DESC keyword.

Syntax –

● SELECT column1 , column2, ...
FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

Ex –

● SELECT * FROM Customers
ORDER BY Country;

● SELECT * FROM Customers
ORDER BY Country ASC, CustomerName DESC;

INSERT INTO:

The INSERT INTO statement is used to insert new records in a table.

Syntax –

● INSERT INTO table_name (column1 , column2 , column3 , ...)
VALUES (value1 , value2 , value3 , ...);

● INSERT INTO table_name
VALUES (value1 , value2 , value3 , ...);

*In the second syntax, make sure the order of the values is in the same order as the columns in
the table.
Ex –

● INSERT INTO Customers (CustomerName, ContactName, Address, City, PostalCode,
Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger', '4006', 'Norway');

NULL Value:

It is not possible to test for NULL values with comparison operators, such as =, <, or

<>. We will have to use the IS NULL and IS NOT NULL operators instead.

Syntax –

● SELECT column_names
FROM table_name
WHERE column_name IS NULL;

● SELECT column_names
FROM table_name
WHERE column_name IS NOT NULL;

Ex –

● SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NULL;

UPDATE:

The UPDATE statement is used to modify the exis�ng records in a table.

Syntax –

● UPDATE table_name

SET column1 = value1 , column2 = value2 , ...
WHERE condi�on ;

Ex –

● UPDATE Customers
SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

DELETE:

The DELETE statement is used to delete exis�ng records in a table.

Syntax –

● DELETE FROM table_name WHERE condi�on ;
● DELETE FROM table_name ;

In 2 nd syntax, all rows are deleted. The table structure, a�ributes, and indexes will be intact

Ex –

● DELETE FROM Customers WHERE CustomerName='Alfreds Fu�erkiste';

SELECT TOP:

The SELECT TOP clause is used to specify the number of records to return.

Syntax –

● SELECT TOP number | percent column_name(s)
FROM table_name
WHERE condi�on ;

● SELECT column_name(s)
FROM table_name
WHERE condi�on
LIMIT number ;

● SELECT column_name(s)
FROM table_name
ORDER BY column_name(s)
FETCH FIRST number ROWS ONLY;

● SELECT column_name(s)
FROM table_name
WHERE ROWNUM <= number ;

*In case the interviewer asks other than the TOP, rest are also correct. (Diff. DB Systems)

Ex –

● SELECT TOP 3 * FROM Customers;
● SELECT * FROM Customers

LIMIT 3;
● SELECT * FROM Customers

FETCH FIRST 3 ROWS ONLY;
Aggregate Func�ons:

MIN():

The MIN() func�on returns the smallest value of the selected column.

Syntax –

● SELECT MIN(column_name)
FROM table_name
WHERE condi�on ;

Ex –

● SELECT MIN(Price) AS SmallestPrice
FROM Products;

MAX():

The MAX() func�on returns the largest value of the selected column.

Syntax –

● SELECT MAX(column_name)
FROM table_name
WHERE condi�on ;

Ex –

● SELECT MAX(Price) AS LargestPrice
FROM Products;

COUNT():

The COUNT() func�on returns the number of rows that matches a specified criterion.

Syntax –

● SELECT COUNT(column_name)

FROM table_name
WHERE condi�on ;

Ex –

● SELECT COUNT(ProductID)
FROM Products;

AVG():
The AVG() func�on returns the average value of a numeric column.

Syntax –

● SELECT AVG(column_name)
FROM table_name
WHERE condi�on ;

Ex –

● SELECT AVG(Price)
FROM Products;

SUM():

The SUM() func�on returns the total sum of a numeric column.

Syntax –

● SELECT SUM(column_name)
FROM table_name
WHERE condi�on ;

Ex –

● SELECT SUM(Quan�ty)
FROM OrderDetails;

LIKE Operator:

The LIKE operator is used in a WHERE clause to search for a specified pa�ern in a column.

There are two wildcards o�en used in conjunc�on with the LIKE operator:

● The percent sign (%) represents zero, one, or mul�ple characters
● The underscore sign (_) represents one, single character

Syntax –

● SELECT column1, column2, ...
FROM table_name
WHERE columnN LIKE pa�ern ;

IN:

The IN operator allows you to specify mul�ple values in a WHERE clause.

The IN operator is a shorthand for mul�ple OR condi�ons.

Syntax –

● SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1 , value2 , ...);

● SELECT column_name(s)
FROM table_name
WHERE column_name IN (SELECT STATEMENT);

Ex –

● SELECT * FROM Customers
WHERE Country IN ('Germany', 'France', 'UK');

● SELECT * FROM Customers

LIKE Operator Descrip�on

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any posi�on

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the second posi�on

WHERE CustomerName LIKE 'a_%' Finds any values that start with "a" and are at
least 2 characters in length

WHERE CustomerName LIKE 'a__%' Finds any values that start with "a" and are at
least 3 characters in length

WHERE ContactName LIKE 'a%o' Finds any values that start with "a" and ends with "o"

WHERE Country IN (SELECT Country FROM Suppliers);

BETWEEN:

The BETWEEN operator selects values within a given range. The values can be numbers, text, or
dates.

The BETWEEN operator is inclusive: begin and end values are included.

Syntax –

● SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;

Ex –
● SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20;

Joins:

A JOIN clause is used to combine rows from two or more tables, based on a related column
between them.

INNER JOIN:

The INNER JOIN keyword selects records that have matching values in both tables.

Syntax –

● SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name ;

Ex –

● SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

LEFT (OUTER) JOIN:

The LEFT JOIN keyword returns all records from the le� table (table1), and the matching records
from the right table (table2). The result is 0 records from the right side, if there is no match.

Syntax –

● SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name ;

Ex –

● SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
ORDER BY Customers.CustomerName;

RIGHT (OUTER) JOIN:

The RIGHT JOIN keyword returns all records from the right table (table2), and the matching
records from the le� table (table1). The result is 0 records from the le� side, if there is no
match.

Syntax –

● SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name = table2.column_name ;

Ex –

● SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders
RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID
ORDER BY Orders.OrderID;

FULL (OUTER) JOIN:

The FULL OUTER JOIN keyword returns all records when there is a match in le� (table1) or right
(table2) table records.

Syntax:

● SELECT column_name(s)

FROM table1
FULL OUTER JOIN table2
ON table1.column_name = table2.column_name
WHERE condi�on ;

Ex –

● SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

UNION:

The UNION operator is used to combine the result-set of two or more SELECT statements.
● Every SELECT statement within UNION must have the same number of columns
● The columns must also have similar data types
● The columns in every SELECT statement must also be in the same order

The UNION operator selects only dis�nct values by default. To allow duplicate values,
use UNION ALL

Syntax –

● SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2 ;

● SELECT column_name(s) FROM table1
UNION ALL
SELECT column_name(s) FROM table2 ;

Ex –

● SELECT City FROM Customers
UNION
SELECT City FROM Suppliers
ORDER BY City;

GROUP BY:

The GROUP BY statement groups rows that have the same values into summary rows, like "find
the number of customers in each country".

The GROUP BY statement is o�en used with aggregate func�ons
(COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one or more

columns. Syntax –

● SELECT column_name(s)
FROM table_name
WHERE condi�on
GROUP BY column_name(s)
ORDER BY column_name(s);

Ex –

● SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
ORDER BY COUNT(CustomerID) DESC;

HAVING:

The HAVING clause was added to SQL because the WHERE keyword cannot be used with
aggregate func�ons.

*WHERE is given priority over HAVING.

Syntax –

● SELECT column_name(s)
FROM table_name
WHERE condi�on
GROUP BY column_name(s)
HAVING condi�on
ORDER BY column_name(s);

Ex –

● SELECT COUNT(CustomerID), Country
FROM Customers
GROUP BY Country
HAVING COUNT(CustomerID) > 5;

CREATE DATABASE:

The CREATE DATABASE statement is used to create a new SQL database.

Syntax –

● CREATE DATABASE databasename ;

DROP DATABASE:

The DROP DATABASE statement is used to drop an exis�ng SQL database.

Syntax –

● DROP DATABASE databasename ;

CREATE TABLE:

The CREATE TABLE statement is used to create a new table in a database.
Syntax –

● CREATE TABLE table_name (
 column1 datatype ,
 column2 datatype ,
 column3 datatype ,

);

DROP TABLE:

The DROP TABLE statement is used to drop an exis�ng table in a database.

Syntax –

● DROP TABLE table_name ;

TRUNCATE TABLE:

The TRUNCATE TABLE statement is used to delete the data inside a table, but not the table itself.

Syntax –

● TRUNCATE TABLE table_name ;

ALTER TABLE:

The ALTER TABLE statement is used to add, delete, or modify columns in an exis�ng table.

The ALTER TABLE statement is also used to add and drop various constraints on an exis�ng
table.

Syntax –

● ALTER TABLE table_name
ADD column_name datatype ;

● ALTER TABLE table_name
DROP COLUMN column_name ;

● ALTER TABLE table_name
MODIFY COLUMN column_name datatype ;

Ex –

● ALTER TABLE Customers
ADD Email varchar(255);

● ALTER TABLE Customers
DROP COLUMN Email;

● ALTER TABLE Persons
ALTER COLUMN DateOfBirth year;

